

Eurex Clearing

Eurex Clearing Messaging Interfaces Connectivity

B: AMQP Programming Guide

© Eurex 2020

Deutsche Börse AG (DBAG), Clearstream Banking AG (Clearstream), Eurex Frankfurt AG, Eurex

Clearing AG (Eurex Clearing) and Eurex Repo GmbH (Eurex Repo) are corporate entities and are

registered under German law. Clearstream Banking S.A. is a corporate entity and is registered

under Luxembourg law. Deutsche Boerse Asia Holding Pte. Ltd., Eurex Clearing Asia Pte. Ltd.

and Eurex Exchange Asia Pte. Ltd are corporate entities and are registered under Singapore law.

Eurex Frankfurt AG (Eurex) is the administrating and operating institution of Eurex Deutschland.

Eurex Deutschland is in the following referred to as “Eurex Exchange”.

All intellectual property, proprietary and other rights and interests in this publication and the

subject matter hereof (other than certain trademarks and service marks listed below) are owned

by DBAG and its affiliates and subsidiaries including, without limitation, all patent, registered

design, copyright, trademark and service mark rights. While reasonable care has been taken in

the preparation of this publication to provide details that are accurate and not misleading at the

time of publication DBAG, Clearstream, Eurex, Eurex Clearing, Eurex Repo as well as Eurex

Exchange and their respective servants and agents (a) do not make any representations or

warranties regarding the information contained herein, whether express or implied, including

without limitation any implied warranty of merchantability or fitness for a particular purpose or

any warranty with respect to the accuracy, correctness, quality, completeness or timeliness of

such information, and (b) shall not be responsible or liable for any third party’s use of any

information contained herein under any circumstances, including, without limitation, in

connection with actual trading or otherwise or for any errors or omissions contained in this

publication.

This publication is published for information purposes only and shall not constitute investment

advice respectively does not constitute an offer, solicitation or recommendation to acquire or

dispose of any investment or to engage in any other transaction. This publication is not intended

for solicitation purposes but only for use as general information. All descriptions, examples and

calculations contained in this publication are for illustrative purposes only.

Eurex and Eurex Clearing offer services directly to members of Eurex Exchange respectively to

clearing members of Eurex Clearing. Those who desire to trade any products available on the

Eurex market or who desire to offer and sell any such products to others or who desire to possess

a clearing license of Eurex Clearing in order to participate in the clearing process provided by

Eurex Clearing, should consider legal and regulatory requirements of those jurisdictions relevant

to them, as well as the risks associated with such products, before doing so.

Only Eurex derivatives that are CFTC-approved may be traded via direct access in the United

States or by United States persons. A complete, up-to-date list of Eurex derivatives that are CFTC-

approved is available at: http://www.eurexchange.com/exchange-en/products/eurex-derivatives-

us. In addition, Eurex representatives and participants may familiarise U.S. Qualified Institutional

Buyers (QIBs) and broker-dealers with certain eligible Eurex equity options and equity index

options pursuant to the terms of the SEC’s July 1, 2013 Class No-Action Relief. A complete, up-

to-date list of Eurex options that are eligible under the SEC Class No-Action Relief is available at:

http://www.eurexchange.com/exchange-en/products/eurex-derivatives-us/eurex-options-in-the-

us-for-eligible-customers. Lastly, U.S. QIBs and broker-dealers trading on behalf of QIBs may

trade certain single-security futures and narrow-based security index futures subject to terms and

conditions of the SEC’s Exchange Act Release No. 60,194 (June 30, 2009), 74 Fed. Reg. 32,200

(July 7, 2009) and the CFTC’s Division of Clearing and Intermediary Oversight Advisory

Concerning the Offer and Sale of Foreign Security Futures Products to Customers Located in the

United States (June 8, 2010).

http://www.eurexchange.com/exchange-en/products/eurex-derivatives-us
http://www.eurexchange.com/exchange-en/products/eurex-derivatives-us
http://www.eurexchange.com/exchange-en/products/eurex-derivatives-us/eurex-options-in-the-us-for-eligible-customers
http://www.eurexchange.com/exchange-en/products/eurex-derivatives-us/eurex-options-in-the-us-for-eligible-customers

Trademarks and Service Marks

Buxl®, DAX®, DivDAX®, eb.rexx®, Eurex®, Eurex Repo®, Eurex Strategy WizardSM, Euro GC

Pooling®, FDAX®, FWB®, GC Pooling®,,GCPI®, MDAX®, ODAX®, SDAX®, TecDAX®, USD GC

Pooling®, VDAX®, VDAX-NEW® and Xetra® are registered trademarks of DBAG.

All MSCI indexes are service marks and the exclusive property of MSCI Barra.

ATX®, ATX® five, CECE® and RDX® are registered trademarks of Vienna Stock Exchange AG.

IPD® UK Quarterly Indexes are registered trademarks of Investment Property Databank Ltd. IPD

and have been licensed for the use by Eurex for derivatives.

SLI®, SMI® and SMIM® are registered trademarks of SIX Swiss Exchange AG.

The STOXX® indexes, the data included therein and the trademarks used in the index names are

the intellectual property of STOXX Limited and/or its licensors Eurex derivatives based on the

STOXX® indexes are in no way sponsored, endorsed, sold or promoted by STOXX and its licensors

and neither STOXX nor its licensors shall have any liability with respect thereto.

Bloomberg Commodity IndexSM and any related sub-indexes are service marks of Bloomberg L.P.

PCS® and Property Claim Services® are registered trademarks of ISO Services, Inc.

Korea Exchange, KRX, KOSPI and KOSPI 200 are registered trademarks of Korea Exchange Inc.

The names of other companies and third party products may be trademarks or service marks of

their respective owners.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 4 of 61

Abstract

This document provides information about the connectivity for the AMQP based Eurex Clearing

FIXML Interface, Eurex Clearing FpML Interface and Eurex Clearing Margin Calculator Interface.

This document is intended to be a guide to Members developing applications, which will utilize

this interface.

Keywords

Eurex Clearing FIXML Interface, Eurex Clearing FpML Interface, Eurex Clearing Margin

Calculator Interface, Advanced Message Queuing Protocol, AMQP, Clearing, FIXML, FpML,

XML, Development guide, Java, C++, .NET

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 5 of 61

Table of Contents

1 Introduction

 8

1.1 Overview 8

1.1.1 Eurex Clearing FIXML Interface 8

1.1.2 Eurex Clearing FpML Interface 8

1.1.3 Eurex Clearing Margin Calculator Interface 8

1.1.4 Eurex Clearing Trade Entry Interface 8

1.1.5 AMQP 8

1.1.6 FIXML 9

1.1.7 FpML 9

1.2 Intended audience 9

1.3 Eurex Clearing Messaging Interface Connectivity documentation 10

1.4 Eurex Clearing FIXML Interface documentation 10

1.5 Eurex Clearing FpML Interface, Margin Calculator Interface and Trade Entry

Interface documentation 11

1.6 Conventions used in this document 11

1.7 Examples used in this document 11

1.8 Organization of this document 11

1.9 Code examples 12

2 Obtaining the AMQP client API 13

2.1 Apache Qpid 13

2.2 SwiftMQ AMQP 1.0 Java client 14

2.3 AMQP.NET Lite client 14

2.4 Vert.x 3 14

2.5 Upgrading client libraries 15

3 Java 16

3.1 SSL / TLS Certificates 16

3.1.1 Client certificate 16

3.1.2 Broker public keys 17

3.1.3 SSL / TLS debugging 18

3.2 JMS 18

3.2.1 Java Naming and Directory Interface (JNDI) 19

3.2.2 Preparing connection and session 19

3.2.3 Creating a receiver/sender 20

3.2.4 Starting the connection 21

3.2.5 Thread safety 21

3.2.6 Receiving/sending messages 22

3.2.6.1 Preparing a request message 22

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 6 of 61

3.2.6.2 Sending a request message 22

3.2.6.3 Receiving a message using Message listener 23

3.2.6.4 Receiving a message using the receive() method 23

3.2.6.5 Message processing 24

3.2.7 Closing the connection 25

3.2.8 Error handling 25

3.3 Apache Qpid JMS client for AMQP 1.0 27

3.3.1 Connection Factory 27

3.3.2 Connection URI 27

3.3.3 Addresses 29

3.3.3.1 Receiving responses to requests 30

3.3.3.2 Sending requests 30

3.3.3.3 “ReplyTo” address in requests 30

3.3.3.4 Receiving broadcasts 31

3.3.4 Performance 31

3.3.4.1 Receive pre-fetching 31

3.3.4.2 Message acknowledgement 32

3.3.4.3 Sender synchronization 32

3.3.5 Logging 33

3.4 SwiftMQ AMQP 1.0 client 34

3.4.1 SSL Client Authentication 34

3.4.2 Preparing connection and session 36

3.4.3 Creating consumer and producer 37

3.4.4 Sending messages 38

3.4.5 Receiving messages 38

3.4.6 Closing the connection 39

3.4.7 Logging 39

4 C++ 40

4.1 Environment setup under Linux 40

4.2 Environment setup under Windows 42

4.3 Specifying the destination (addresses) 43

4.3.1.1 Receiving responses to requests 43

4.4 Preparing connection and session 44

4.4.1 Auto reference handling 45

4.5 Creating a receiver/sender 45

4.6 Thread safety 47

4.7 Receiving/sending messages 47

4.7.1 Preparing a request message 47

4.7.2 Sending a request message 47

4.7.3 Receiving a message 48

4.7.4 Message processing 48

4.8 Closing the connection 48

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 7 of 61

4.9 Compilation and linking on the Linux operating system 49

4.10 Compilation and linkage under the Windows operating system 49

4.11 Logging 49

4.12 Error handling 50

4.13 Performance 51

4.13.1 Receive pre-fetching 51

4.13.2 Message acknowledgement 51

4.13.3 Sender synchronization 52

5 .NET 53

5.1 Apache Qpid Messaging API 53

5.2 AMQP.NET Lite 53

5.2.1 Environment setup 53

5.2.2 Preparing Connection and Session 54

5.2.3 Receiving / Sending messages 55

5.2.3.1 Creating receiver / sender 55

5.2.3.2 Using filters 55

5.2.3.3 Preparing a request message 56

5.2.3.4 Sending a request message 56

5.2.3.5 Receiving a message 56

5.2.3.6 Message Processing 56

5.2.4 Closing the connection 56

5.2.5 Logging 57

6 Python 58

7 Troubleshooting 59

7.1 Errors 59

7.1.1 Connection failure 59

7.1.2 Too many connections 59

7.1.3 Unknown destination 59

7.1.4 Invalid destination 59

7.1.5 Non-existent queue 59

7.1.6 Invalid queue 60

7.1.7 Full queue 60

7.1.7.1 Message count limit 60

7.1.7.2 Byte size limit 60

7.2 Lost connection 60

8 Glossary of terms and abbreviations 61

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 8 of 61

1 Introduction

1.1 Overview

1.1.1 Eurex Clearing FIXML Interface

The Eurex Clearing FIXML Interface provides Eurex Clearing Members with a highly flexible,

standards compliant and cost-effective way to use Eurex Clearing services. Based on this

interface, Members are allowed to choose and deploy their own operating systems and access

interfaces.

1.1.2 Eurex Clearing FpML Interface

The Eurex Clearing FpML Interface provides EurexOTC Members with a highly flexible,

standards compliant and cost-effective way to use EurexOTC Clear services. Based on this

interface, Members are allowed to choose and deploy their own operating systems and access

interfaces.

1.1.3 Eurex Clearing Margin Calculator Interface

The Eurex Clearing Margin Calculator Interface provides EurexOTC Members with a highly

flexible, standards compliant and cost-effective way to use the EurexOTC Clear Margin

Calculator service. Based on this interface, Members are allowed to choose and deploy their

own operating systems and access interfaces.

1.1.4 Eurex Clearing Trade Entry Interface

The Eurex Clearing Trade Entry Interface provides EurexOTC Service Providrs with a highly

flexible, standards compliant and cost-effective way to use EurexOTC Clear services. Based on

this interface, Approved Trade sources are allowed to choose and deploy their own operating

systems and access interfaces.

1.1.5 AMQP

The Advanced Message Queuing Protocol (AMQP) constitutes the preferred transport layer for

delivering messages. AMQP is an open standard with a specific focus on the financial services

industry which can be used royalty free. Members can choose the platform and programming

language for their client applications. More information is available at the AMQP homepage:

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 9 of 61

• http://www.amqp.org/

1.1.6 FIXML

Application layer messages on the Eurex Clearing FIXML Interface are based upon and

compliant to the widely used FIX standard. FIXML is the XML vocabulary for creating Financial

Information eXchange (FIX) protocol messages based on XML.

The Futures Industry Association (FIA)/Futures and Options Association (FOA) initiative for

standardized post-trade processing has chosen FIX as the standard communication protocol.

More information can be found here:

• http://www.futuresindustry.org/downloads/FIMag/2007/Outlook/Outlook-Standards.pdf

The specification of FIX 5.0 SP2 is provided here:

• http://www.fixtradingcommunity.org/FIXimate/FIXimate3.0/

To learn more about supported FIX/FIXML messages, please refer to “Volume 1: Overview” and

volumes 3-5 which are available for download in the public section of the Eurex Clearing

website.

1.1.7 FpML

Application layer messages on the Eurex Clearing FpML Interface are based upon and compliant

to the widely used FpML standard. FpML – Financial products Markup Language – is the

industry standard for complex financial products which is based on XML.

The specification for FpML 5.6 is provided here:

• http://www.fpml.org

To learn more about supported XML/FpML messages, please refer to “Volume 1: Overview” and

“Volume 3: Trade Notification & Take-up Confirmation”, and “Volume 3-A: Post Trade Events”

which is available for download in the Member Section of the Eurex Clearing website.

1.2 Intended audience

This document is intended for system designers and programmers who wish to develop/adapt

their client application to interact with the services offered by the Eurex Clearing FIXML

Interface, the Eurex Clearing FpML Interface, the Eurex Clearing Margin Calculator Interface or

Eurex Clearing Trade Entry Interface.

This Programming Guide expects the knowledge of the Eurex Clearing FIXML Interface

Specification or of the Eurex Clearing FpML Interface.

http://www.amqp.org/
http://www.futuresindustry.org/downloads/FIMag/2007/Outlook/Outlook-Standards.pdf
http://www.futuresindustry.org/downloads/FIMag/2007/Outlook/Outlook-Standards.pdf
http://www.fixtradingcommunity.org/FIXimate/FIXimate3.0/
http://www.fpml.org/

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 10 of 61

1.3 Eurex Clearing Messaging Interface Connectivity documentation

The Eurex Clearing FIXML, FpML, Margin Calculator and Trade Entry Interfaces share common

connectivity documents for AMQP and WebSphere MQ:

• A: Overview

• B: AMQP Programming Guide (this document)

• E: AMQP Setup and Internals

All “Eurex Clearing Interfaces – Connectivity” documents are available for download on the

Eurex website under the following paths:

For the Eurex Clearing Classic System:

http://www.eurexclearing.com → Technology → Eurex Clearing classic system → System

documentation → Eurex Clearing Interfaces

For Eurex Clearing’s C7:

http://www.eurexclearing.com → Technology → Eurex Clearing’s C7 → System

documentation → Release […] → Eurex Clearing Interfaces

Simplified (especially error & exception handling and logging) code examples to provide better

overview of the functionality are available for download on GitHub.

• https://github.com/Eurex-Clearing-Messaging-Interfaces

1.4 Eurex Clearing FIXML Interface documentation

The Eurex Clearing FIXML Interface documentation is organized as follows:

• Volume 1: Overview

• Volume 3: Transaction & Position Confirmation

• Volume 4: Transaction & Position Maintenance

• Volume 5: Public Broadcasts

• Volume 6: Message Samples

All documents and the public keys of the AMQP broker are available for download in the public

section of the Eurex Clearing website under the following paths:

For the Eurex Clearing Classic System:

http://www.eurexclearing.com → Technology → Eurex Clearing classic system → System

documentation → Eurex Clearing Interfaces

For Eurex Clearing’s C7:

http://www.eurexclearing.com/
http://www.eurexclearing.com/
https://github.com/Eurex-Clearing-Messaging-Interfaces
http://www.eurexclearing.com/

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 11 of 61

http://www.eurexclearing.com → Technology → Eurex Clearing’s C7 → System

documentation → Release […] → Eurex Clearing Interfaces

1.5 Eurex Clearing FpML Interface, Margin Calculator Interface and Trade
Entry Interface documentation

The Eurex Clearing FpML Interface, Eurex Clearing Margin Calculator Interface and Eurex

Clearing Trade Entry Interface documentation is organized as follows:

• Volume 1: Overview

• Volume 3: Trade Notification & Take-Up Confirmation

• Volume 3-A: Post Trade Events

• Volume 3-B: EurexOTC Eurex FpML API for Trade Entry

• Volume 3-C: EurexOTC Clear Margin Calculator Interface

All documents and the public keys of the AMQP brokers are available for download in the

Member Section of the Eurex Clearing website under the following path:

https://member.eurexclearing.com -> Technology -> EurexOTC Clear -> OTC Release […] ->

Eurex Clearing FpML Interface

1.6 Conventions used in this document

• Cross references to other chapters within this document are always clickable, but not

marked separately.

• Hyperlinks to websites are underlined.

Changes applied to this document after the last version has been published (other than

grammar/spelling corrections) are marked with a change bar in the left margin as demonstrated

in this paragraph. Old change bars will be removed from version to version.

1.7 Examples used in this document

The Member ABCFR and the Eurex Clearing FIXML/FpML/Margin Calculator Interface account

ABCFR_ABCFRALMMACC1 are used in the examples in all chapters of this document.

1.8 Organization of this document

• Chapter 2 – Obtaining the AMQP Client API

o Describes how the Apache Qpid client software can be obtained

• Chapter 3 – Java

o Describes how to use the Java interface

http://www.eurexclearing.com/
https://member.eurexclearing.com/

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 12 of 61

• Chapter 4 – C++

o Describes how to use the C++ interface

• Chapter 5 – .NET

o Describes how to use the .NET interface

• Chapter 6 – Python

o Describes how to use the Python clients

• Chapter 7 – Troubleshooting

o Describes typical problems

• Chapter 8 – Glossary of Terms and Abbreviations

o Glossary of terms and abbreviations used through the document

1.9 Code examples

Simplified (especially error & exception handling and logging) code examples are available, to

provide better overview of the functionality. The examples are available for download on

GitHub:

https://github.com/Eurex-Clearing-Messaging-Interfaces

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 13 of 61

2 Obtaining the AMQP client API

The Eurex Clearing interfaces support only AMQP 1.0 protocol (ISO 19464).

There are multiple implementations of the AMQP protocol. AMQP brokers for Eurex Clearing

interfaces are using the Apache Qpid C++ broker implementation. However, the Members are

not obligated to use the client libraries provided by the same vendor as Eurex Clearing is using.

Eurex clearing interfaces should be compatible with every AMQP client library which:

• Supports AMQP 1.0 protocol

• Supports TLS encryption

• Supports TLS client authentication and SASL EXTERNAL mechanism

Following libraries were tested for compatibility with Eurex Clearing interfaces:

• Apache Qpid client libraries

• SwiftMQ AMQP 1.0 client library

• AMQP.NET Lite client library

• Vert.x 3 Proton client library

2.1 Apache Qpid

Apache Qpid is open source AMQP implementation licensed under the Apache License 2.0.

More information can be found on the Qpid website: http://qpid.apache.org

The client libraries supporting AMQP 1.0 are available for multiple programming languages,

including:

• C++

• C# .NET

• Java

• Python

Following components are expected to be compatible with Eurex Clearing interfaces:

• Qpid Messaging API (C++)1

• Qpid JMS for AMQP 1.0 (Java, http://qpid.apache.org/components/jms/index.html)

• Qpid Dispatch router (AMQP 1.0 only)

• Qpid Proton C

• C++ and Python bindings for Qpid Proton

1 The Qpid Messaging API is written in C++. Bindings are available for .NET, Python, Ruby

and Perl.

http://qpid.apache.org/
http://qpid.apache.org/components/jms/index.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 14 of 61

Members are free to choose any of the above mentioned libraries according to their own

requirements. The last versions tested for compatibility with Eurex Clearing interfaces are:

• Qpid Messaging C++ and Python client 1.39.0

• Qpid JMS client 0.51.0

• Qpid Dispatch router 1.12.0

• Qpid Proton C and its C++ and Python bindings version 0.30.0

The Apache Qpid project provides the documentation as well as API references for all of its

components on its website (http://qpid.apache.org/documentation.html)

2.2 SwiftMQ AMQP 1.0 Java client

SwiftMQ offers a Java based AMQP 1.0 client, which is compatible with Eurex Clearing

interfaces. This client is not open source, but is available for free. More information about this

client can be found on http://www.swiftmq.com.

The last version tested for compatibility with Eurex Clearing interfaces was 9.7.1.

2.3 AMQP.NET Lite client

AMQP.NET Lite is AMQP 1.0 client library from Microsoft, which is written in pure .NET / C#.

It is available as open source under the Apache License 2.0 and can be downloaded from

GitHub:

• https://github.com/Azure/amqpnetlite

The AMQP.NET Lite library is compatible with Eurex Clearing interfaces since release 1.1.2.

2.4 Vert.x 3

Vert.x is a tool-kit for building reactive applications on the Java Virtual Machine. AMQP support

is provided using the Vert.X Proton library. More information about Vert.x can be found on its

website:

• http://vertx.io/

The last version tested for compatibility with Eurex Clearing AMQP Interfaces is 3.3.0.

The detailed description of the Vert.x 3 libraries and their interfaces is not part of this

documentation. However simple programs for receiving broadcasts, sending requests and

receiving responses using Vert.x is part of the code examples – see chapter 1.9 for more details.

http://qpid.apache.org/documentation.html
http://www.swiftmq.com/
https://github.com/Azure/amqpnetlite

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 15 of 61

2.5 Upgrading client libraries

It is recommended to always use the last stable version available. New releases of the client

libraries usually bring many updates and bug fixes. It is recommended to follow the

development and regularly upgrade to the latest version.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 16 of 61

3 Java

This chapter contains the guide through the development of Eurex Clearing interface client

programs in Java.

3.1 SSL / TLS Certificates

Eurex Clearing interfaces are using TLS encryption and certificate based client authentication to

ensure the security. Both the public keys of the AMQP broker as well as the client certificate

have to be provided to the client. Without them, the clients will be unable to connect /

authenticate.

3.1.1 Client certificate

The guide for generating the client certificates is part of the “Volume A: Connectivity” document.

Java clients require the client certificate to be provided in the Java Keystore format (JKS), where

it is encrypted and protected by password. When using the keytool utility to generate the

certificate, it will be created already in the JKS format. In case other tools were used to generate

the certificate, it has to be converted first.

Following command can be used to convert certificate from PKCS12 format to the JKS format2:

$ keytool -importkeystore -srckeystore <PKCS12 certificate> -srcstoretype PKCS12 -

destkeystore <JKS certificate>

For example:
$ keytool -importkeystore -srckeystore ABCFR_ABCFRALMMACC1.p12 -srcstoretype PKCS12 -

destkeystore ABCFR_ABCFRALMMACC1.keystore

Enter destination keystore password:

Re-enter new password:

Enter source keystore password:

Entry for alias carex_testcalmmacc1 successfully imported.

Import command completed: 1 entries successfully imported, 0 entries failed or

cancelled

During the conversion, new password to the JKS certificate as well as the password for the

existing KPCS12 file has to be entered.

A certificate which is ready to be used by a Java client might look very similar to this:
$ keytool -list -v -keystore ABCFR_ABCFRALMMACC1.keystore

Enter keystore password:

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: abcfr_abcfralmmacc1

Creation date: Feb 10, 2015

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

2 Some of the Java clients are able to use the PKCS12 format directly

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 17 of 61

Owner: CN= ABCFR_ABCFRALMMACC1

Issuer: CN= ABCFR_ABCFRALMMACC1

Serial number: 54bce281

Valid from: Mon Jan 19 11:54:57 CET 2015 until: Fri Jan 19 11:54:57 CET 2018

Certificate fingerprints:

 MD5: AA:22:FD:83:43:26:8B:79:30:CA:74:6D:31:7B:BA:72

 SHA1: FE:46:CD:84:86:49:34:15:7F:1D:D8:A5:B0:BE:CA:F6:19:C2:A6:3B

 SHA256:

40:8B:A1:1F:68:58:90:0D:B2:1D:4C:F0:77:2D:CD:39:E3:73:62:B9:FA:CF:BF:EA:A5:08:08:F2:86:4

F:8A:70

 Signature algorithm name: SHA512withRSA

 Version: 3

The keystore file needs to be provided to the Java client together with the password.

3.1.2 Broker public keys

When connecting to the broker, the Member application should verify the identity of the AMQP

broker in order to protect against man in the middle attacks. The Eurex Clearing AMQP brokers

use certificates signed by a trusted certification authority (CA). The public keys of Eurex

Clearing interfaces can be used to verify their identity. Each interface has its own unique keys

for simulation and production environments.

The public key(s) should be stored in a file called “truststore”. The truststore is stored in Java

Keystore (JKS) format, where it is encrypted and protected by password. The truststore file

needs to be provided to the Java client together with the password. The truststore can contain

multiple public keys.

The public keys of the AMQP broker are available on the website of Eurex Clearing under the

following path:

Eurex Clearing FIXML Interface: http://www.eurexclearing.com → Technology → Eurex

Clearing classic system / Eurex Clearing’s C7 → System documentation → Eurex Clearing

Interfaces

Eurex Clearing FpML Interface: http://member.eurexclearing.com → Technology → EurexOTC

Clear → OTC Release [...] → Eurex Clearing FpML Interface

Eurex Clearing Margin Calculator Interface: http://member.eurexclearing.com → Technology

→ EurexOTC Clear → OTC Release [...] → Eurex Clearing FpML Interface

Eurex Clearing Trade Entry Interface: http://member.eurexclearing.com → Technology

→ EurexOTC Clear → OTC Release [...] → Eurex Clearing FpML Interface

They can be easily loaded into a new truststore using import functionality of the keytool utility.3

>keytool -importcert -file <Broker1 certificate> -alias simulation -

keystore <Truststore filename>

3 See “Volume A: Connectivity” for more details about the keytool utility.

http://www.eurexclearing.com/
http://member.eurexclearing.com/
http://member.eurexclearing.com/
http://member.eurexclearing.com/

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 18 of 61

Enter keystore password: <Password>

Owner: CN=ecag-fixml-simu1.deutsche-boerse.com

Issuer: CN=VeriSign Class 3 Secure Server CA - G3

Serial number: ad5500000002b7f9b8f4f31234af

Valid from: Tue Apr 15 18:35:26 CEST 2012 until: Sun Apr 14 18:35:26

CEST 2014

Certificate fingerprints:

 MD5: 8F:AE:D7:14:CD:37:3F:3B:E8:E7:F2:42:F3:14:BE:4E

 SHA1:

94:52:92:97:7C:0A:D7:23:11:E6:43:69:B0:1F:C5:1B:9F:C2:D3:9B

 Signature algorithm name: SHA1withRSA

 Version: 3

Trust this certificate? [no]: yes

Certificate was added to keystore

The <Broker1 certificate> and <Truststore filename> as well as the

<Password> values have to be replaced according to Member’s environment. The resulting

truststore file should contain the public keys of all brokers as trusted certificate entry:

>keytool -list -keystore <Truststore filename>

Enter keystore password: <Password>

Keystore-Typ: jks

Keystore-Provider: SUN

Your keystore contains 2 entries

simulation, 28.04.2011, trustedCertEntry,

Certificate fingerprint (MD5):

86:58:B9:E1:83:80:E6:68:63:7E:92:EA:30:4A:D5:91

production, 28.04.2011, trustedCertEntry,

Certificate fingerprint (MD5):

86:63:B9:EA:83:80:E6:6F:6C:AE:92:EB:40:A2:31:53

3.1.3 SSL / TLS debugging

In case of problems with the SSL / TLS connection, the applications using Apache Qpid Java

API have a SSL debugging mode. This mode can be activated using the system property

-Djavax.net.debug=ssl

3.2 JMS

Some of the Java clients are based on Java Message Service (JMS). JMS is a message oriented

middleware API, which is a part of the Java Platform Enterprise Edition. More information about

Java Message Service can be found at the Oracle website -

http://www.oracle.com/technetwork/java/index-jsp-142945.html.

http://www.oracle.com/technetwork/java/index-jsp-142945.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 19 of 61

The goal of this chapter is not to provide a comprehensive guide to JMS API, but to provide

code snippets illustrating the work with the Eurex Clearing FIXML/FpML/Margin Calculator

Interface in Java.

The details which are specific to the different JMS implementations will be described in the

subsequent chapters.

3.2.1 Java Naming and Directory Interface (JNDI)

The JMS applications typically use the Java Naming and Directory Interface (JNDI) to obtain a

connection factory, connection URI and message source / target adresses. The JNDI

configuration might be kept separate from the application – for example stored in a properties

file. But it can be also dynamically created Properties or HashMap object.

The JNDI properties are used by the client application to connect to the broker and send or

receive messages. The connection factory name as well as the syntax of the connection URI and

addresses are different for different APIs.

The properties file has to be loaded and processed into the application. The classes

Properties (java.util) and InitialContext (javax.naming) will be used. Following

example shows how to load the properties from a file:

InitialContext ctx;

Properties properties = new Properties();

properties.load(new FileInputStream("<PropertiesFile>"));

ctx = new InitialContext(properties);

The <PropertiesFile> has to be replaced according to the Member’s environment. As a

result, an InitalContext object is created in variable ctx containing all JNDI resources

defined in the properties file. The context will be used later to retrieve the connection string and

the destinations.

3.2.2 Preparing connection and session

The connection (class Connection from javax.jms) is created using the

ConnectionFactory class (javax.jms). The connection factory has to be initialized using

the connection string from our context:

ConnectionFactory fact = (ConnectionFactory)ctx.lookup("connection");

The connection factory is used to create a connection:

Connection conn;

conn = fact.createConnection();

After these steps, the connection is created in the conn object and connects to the AMQP

broker. However, it is in state STOPPED. The STOPPED state allows the applications to send

messages, but not to receive them. In order to receive messages, the connection has to be

started (see chapter 3.2.4). This gives the application enough time to prepare for receiving of

messages (create receivers, queues, listeners, …).

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 20 of 61

Using the prepared connection, a session can be created.4 The session is an instance of class

Session from package javax.jms:

Session sess;

sess = conn.createSession(false, Session.CLIENT_ACKNOWLEDGE);

The Session.CLIENT_ACKNOWLEDGE parameter is instructing the session, that the

acknowledgments of the messages will be done manually by the client application. In case the

acknowledgement should be done automatically by the application, the

Session.AUTO_ACKNOWLEDGE option should be used. Using auto-acknowledgements without

transactions is not recommended (see Eurex Clearing FIXML/FpML/Margin Calculator Interface

Specification, “Volume E: AMQP Setup & Internals” for more details about reliability).

A session should be used as a long lasting resource and shouldn’t be created too often. For

instance creating a new session for sending each message in a tight loop can result in following

exception:

javax.jms.JMSException (Exception when sending message:timed out waiting for session to

become open (state=DETACHED))”

Instead, the application should create a session before entering the loop and re-use the session.

When using the Spring framework, the SingleConnectionFactory should not be used

because it recreates Session and Producer each time a message is to be sent. Instead, for

example the CachingConnectionFactory should be used. The

CachingConnectionFactory keeps both Session and Producer created and attached.

3.2.3 Creating a receiver/sender

After the connection and session have been prepared, a receiver or producer can be prepared

next. The producer is an instance of class MessageProducer (javax.jms). The producer can

be created by the session, using the method createProducer(…). The producer is always

bound to a specific destination, queue or topic which can be created from the context which

has been prepared in chapter Error! Reference source not found.:

MessageProducer requestProducer;

Destination requestDest = (Destination)ctx.lookup("requestAddress");

requestProducer = sess.createProducer(requestDest);

The message receiver is an instance of class MessageConsumer5 (javax.jms). The receiver

is created in the same way as the producer. Just instead of using the session’s

createProducer(…) method, the method createConsumer(…) is used. The receivers for

receiving responses or broadcasts are created in the same way. Just the destination (and the

address which has been used to create the destination) is different:

4 For more details about the differences and relationship between connection and session, please visit JMS

documentation or AMQP specification.
5 The JMS and AMQP are using slightly different terminology. The JMS term Consumer corresponds to the AMQP term

receiver.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 21 of 61

MessageConsumer responseConsumer;

Destination responseDest = (Destination)ctx.lookup("responseAddress");

responseConsumer = sess.createConsumer(responseDest);

When creating the consumer, you can also specify a selector to receive only selected messages.

The selector can be either based on a message property or on a message application property.

On the wire, the JMS selector is translated to AMQP filter and the filtering of messages is done

directly on the AMQP broker. The JMS selector follows the JMS syntax. You can filter based on

application properties:

responseConsumer = sess.createConsumer(responseDest,

"BusinessDate='20160813'");

Or you can filter based on message properties – for example using JMS Correlation ID:

responseConsumer = sess.createConsumer(responseDest,

"JMSCorrelationID='" + correlationID + "'");

There are multiple methods to get the messages from the receiver. One of them is a usage of a

message listener. Message listener is a special object, which implements the

MessageListener interface from package javax.jms. In order to use the listener, it has to

be registered with the producer. The registration can be done using the

setMessageListener(…) method of the receiver:

responseConsumer.setMessageListener(new Listener());

The listener will be described in detail in chapter 3.2.6.3.

3.2.4 Starting the connection

With connection, session and receiver ready, the connection can be started:

conn.start();

Only when the connection is started, the application can receive messages from the AMQP

broker. If the application is intended to only send messages, the start of the connection is not

necessary.

3.2.5 Thread safety

The JMS Session object is not thread safe. Since a MessageProducer/MessageConsumer is

bound to a Session it cannot be used from more than one thread at the same time. For multi-

threaded access it is necessary to use a separate session (and underlying objects) from each

thread.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 22 of 61

3.2.6 Receiving/sending messages

3.2.6.1 Preparing a request message

To prepare a new message, the TextMessage class (javax.jms) can be used. For request

messages, only the message body and the reply to key have to be filled. The message body can

be entered when a new message is constructed, using the session’s method

createTextMessage(…). After preparing the message, the reply to destination, queue or

topic can be assigned to it. As before, the destination for the reply to parameter is created from

the context object. With the destination being ready, the method setJMSReplyTo(…) can be

used to assign it to the message.

TextMessage message = sess.createTextMessage("<FIXML>...</FIXML>");

Destination replyDest = (Destination)ctx.lookup("replyAddress");

message.setJMSReplyTo(replyDest);

3.2.6.2 Sending a request message

The message prepared in the previous chapter can be sent using the message producer. Since

the producer has been initialized with the destination already at the beginning, it is not

necessary to use the request destination again:

requestProducer.send(message);

Depending on the specific client, the messages might be by default sent synchronously or

asynchronously.

The request queues have only limited capacity and when the queue is almost full a flow control

mechanism will be activated by the broker (the exact queue sizes as well as the flow control

thresholds for different interfaces can be found in the Volume E of this documentation). When

the flow control is activated for the given request queue, the broker will delay sending the

confirmations of received messages. However, the flow control support in the Java JMS API is

only limited and when the flow control is activated the client will only wait for certain time and

afterwards the send call fails with an exception. When sending the messages asynchronously,

the client will continue sending messages and can exceed the queue capacity despite the flow

control.

The recommended way how to ensure the queue capacity will not be exceeded in Java JMS

client is to track the number of outstanding requests (requests which were sent and not yet

responded to) within the application and stop sending messages when the number of

outstanding requests reaches the flow control threshold.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 23 of 61

3.2.6.3 Receiving a message using Message listener

Message listener can be every object which implements the MessageListener interface

(javax.jms). The assignment of the listener to the receiver is described in chapter 3.2.3. The

MessageListener interface has only one method, called onMessage(…). This method is

called whenever the receiver receives a new message. The message is passed to the

onMessage() method as a parameter and can be either processed inside of the method or

passed to another object. In case the session has been created with manual

acknowledgements, the message should be acknowledged after its processing is finished (see

chapter 3.2.2 for more details). The acknowledgement can be done using the call of the

acknowledge() method of the message. When using auto-acknowledgements, it is not

necessary to acknowledge the message manually. One listener object can be used by multiple

receivers.

public class Listener implements MessageListener

{

 public void onMessage(Message msg) {

 // Processing of the message

 try {

 // Acknowledging the message manually

 msg.acknowledge();

 } catch (JMSException e) {

 // Handling the exception

 }

 }

}

Please note, that the JMS Session object is not thread-safe. Therefore, it should not be used

concurrently from multiple threads. If it is planned to receive concurrently messages from

multiple sources, then one should create different sessions and create for each session one

MessageConsumer, since the MessageConsumer is created and assigned to one session only.

Afterwards, each MessageListener will then be assigned to different MessageConsumers and

therefore to different Sessions.

Using single session for multiple MessageConsumers has the effect that all calls to their

onMessage() methods are serialized and the parallel message consuming is not used.

The message listener is used in the broadcast receiver example.

3.2.6.4 Receiving a message using the receive() method

Messages can be also received using the receive() method of the MessageConsumer

instance:

Message msg = responseConsumer.receive();

// Processing of the message

msg.acknowledge();

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 24 of 61

Using parameters of the receive() method, the application can either wait until a message is

received for a limited (pass the timeout in milliseconds as a parameter to the method) or

unlimited time. Using the method receiveNoWait(), a message can be received without

waiting (if there is no message waiting, the method will return null).

In case the session has been created with manual acknowledgements, the message should be

acknowledged after its processing is finished (see chapter 3.2.2 for more details). The

acknowledgement can be done using the call of the acknowledge() method of the message.

When using auto-acknowledgements, it is not necessary to acknowledge the message manually.

The receive() method is used in the response receiver example.

3.2.6.5 Message processing

The received message is returned from the receive() method or passed to the onMessage()

listener method as an instance of the more generic class Message (javax.jms). In order to

process the message, it has to be casted either to TextMessage or the ByteMessage. The

JMS API decides based on the message payload and message properties whether the message

will be handled as TextMessage or BytesMessage. The messages received on Eurex Clearing

interfaces might be presented in both types, depending on the message sender and the exact

content.

With an instance of TextMessage class, it is easy to retrieve the message body. The method

getText(…) will return the body as a String object. BytesMessage has the methods

getBodyLength() and readByte(), which can be used to read the message body byte by

byte. Since the FIXML/FpML/Margin Calculator response or broadcast messages are text based,

the byte content has to be transformed to a string using a StringBuilder class.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 25 of 61

if (msg instanceof TextMessage)

{

 TextMessage textMessage = (TextMessage) msg;

 messageText = textMessage.getText();

 // process the message body

}

else if (msg instanceof BytesMessage)

{

 BytesMessage bytesMessage = (BytesMessage) msg;

 StringBuilder builder = new StringBuilder();

 for (int i = 0; i < bytesMessage.getBodyLength(); i++) {

 builder.append((char)bytesMessage.readByte());

 }

 // process the message body

}

else

{

 // Unexpected message delivered

}

All other message attributes can be retrieved using the usual getter methods.

3.2.7 Closing the connection

When the application is exiting, it should properly close all AMQP related objects. The receivers,

producers, session and connection all have a method close(), which will properly close them:

responseConsumer.close();

requestProducer.close();

sess.close();

conn.close();

3.2.8 Error handling

In JMS the errors are handled by catching the proper exceptions. The errors are either

synchronous (e.g. creating the session fails) or asynchronous (e.g. the connection to the broker

is lost as the client is waiting for messages). This chapter explains how to properly handle and

recover from such situations.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 26 of 61

A client application should be designed in a way that it is resilient to the above errors, it doesn’t

get stuck when error occurs and at the same time it doesn’t start consuming more and more

resources. The main building blocks for each client application are (starting from the top) a

connection, session and receiver/sender. Closing a session automatically closes all

receivers/senders beneath it and closing a connection automatically closes all underlying

sessions.

A typical way of handling the chain of creating the producer/consumer may look like:

try {

 connection = fact.createConnection();

 session = connection.createSession(false,

 Session.CLIENT_ACKNOWLEDGE);

 Destination requestDestination = (Destination)

 ctx.lookup("requestAddress");

 MessageProducer requestProducer;

 requestProducer = session.createProducer(requestDestination);

} catch (JMSException e) {

 e.printStackTrace();

} finally {

 connection.close();

}

In the above example we omitted the creation of the context and connection factory for better

readability. Creation of the connection, session or message producer can result in a failure and

in that case an exception is thrown. In the catch block, we print the stack trace and continue

with a finally block by closing the connection, which is executed also in the case when try block

finished without any failure.

The JMSException is the root class for exceptions thrown by JMS API methods. Catching

JMSException provides a generic way of handling all exceptions related to the JMS API. One

can catch the subclasses of this exception (e.g. IllegalStateException,

InvalidDestinationException) which are described in the JMS API documentation. In

some cases, depending on the type of error, it is not necessary to close the whole connection,

but only the session and/or restart the producer/consumer. However, the JMS doesn’t define

what happens in terms of the connection preservation in each case; neither there is a

straightforward way of checking whether the connection or session is still valid. Closing and

restarting the connection can be therefore considered as the safest option.

The above example illustrates how to catch exceptions synchronously, i.e. when some particular

JMS API method fails.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 27 of 61

For applications with only asynchronous message consumers, there exists an

ExceptionListener interface behavior as follows. If a JMS provider detects a serious

problem with a Connection object, it informs the Connection object's ExceptionListener, if

one has been registered. It does this by calling the listener's onException method, passing it

a JMSException argument describing the problem. In practice, when an exception listener is

called, the connection is broken and the JMS service is no longer available for the connection.

The example source codes present the way how to register the ExceptionListener and how

to notify the main thread in case an asynchronous exception occurs. Such a class has to

implement the ExceptionListener interface and override the onException method.

Afterwards, the instantiated class can be registered using Connection’s

setExceptionListener method.

Generally, the client application should properly check all JMS API methods for exceptions and

in case the exception occurred, an application can, at a minimum, log the problem and clean

up its resources. An application can also notify any interested parties that need to be notified of

such a problem. An application should be designed with a clean initialization setup, so it would

be feasible to reinitialize the JMS objects when the exception occurs (either synchronous or

asynchronous).

3.3 Apache Qpid JMS client for AMQP 1.0

3.3.1 Connection Factory

The Apache Qpid JMS client for AMQP 1.0 has its own connection factory, which is used to

resolve the JNDI properties. The properties file has to contain the identification of the context

factory:

java.naming.factory.initial=org.apache.qpid.jms.jndi.JmsInitialContextFactory

3.3.2 Connection URI

The connection URI specifies where the AMQP client should connect and what connection

parameters should be used. In the JNDI properties, the connection URI should be placed like

this:

connectionfactory.[jndiname]=<ConnectionURL>

for example:

connectionfactory.connection=<ConnectionURL>

For connecting to Eurex Clearing interfaces the connection string needs to specify:

• The correct IP address/hostname of the broker

• The correct port of the broker

• The path to the keystore with the client certificate

• Alias of the member certificate in the keystore

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 28 of 61

• The path to the truststore with the broker public keys

• Passwords for the keystore and truststore

• Idle timeout

The connection URI has a following format:

amqp://hostname:port[?option=value[&option2=value...]]

or for SSL connections:

amqps://hostname:port[?option=value[&option2=value...]]

The options needed to connect to the Eurex AMQP Interfaces are:

• jms.clientID

• transport.trustStoreLocation

• transport.trustStorePassword

• transport.keyStoreLocation

• transport.keyStorePassword

• transport.keyAlias

• amqp.idleTimeout

Example connection string:

amqps://<Hostname>:<Port>?jms.clientID=<ClientID>&transport.trustStoreLocation=<PathToTr

uststore>&transport.trustStorePassword=<TruststorePassword>&transport.keyStoreLocation=<

PathToKeystore>&transport.keyStorePassword=<KeystorePassword>&transport.keyAlias=<Keysto

reAlias>&amqp.idleTimeout=<HeartbeatInterval>

The client ID is the unique identifier of a Member application and can be defined according to

the Member’s needs. Multiple connections with the same client ID will be refused.

Idle timeout needs to be specified in number of milliseconds. If not used than the Qpid JMS

client is using default idle timeout / heartbeat of 60000 milliseconds. The recommended

idleTimeout interval is between 30000 and 120000 miliseconds.

An example connection string for the Eurex Clearing FIXML Interface may then look like this:

amqps://ecag-fixml-simu1.deutsche-boerse.com:10170?jms.clientID=my-test-

client1&transport.trustStoreLocation=truststore.jks&transport.trustStorePassword=123456&

transport.keyStoreLocation=ABCFR_ABCFRALMMACC1.keystore&transport.keyStorePassword=12345

6&transport.keyAlias=abcfr_abcfralmmacc1&amqp.idleTimeout=60000

Additional connection options can be found in the documentation on

http://qpid.apache.org/documentation.html

http://qpid.apache.org/documentation.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 29 of 61

The client supports automatic failover / reconnect. To enable the failover, the connection URI

has to be wrapped into a failover prefix. The options starting with “jms.” Should be used outside

of the failover enclosure while the other options (e.g. starting with “amqp.” or “transport.”)

should stay inside. Alternatively, the other options can used outside of the failover enclosure

with the prefix “failover.nested.” – such options would apply to all brokers.

failover:(amqps://hostname:port[?option=value[&option2=value...]])[?failoverOption=value

[&failoverOption2=value...][&jmsOption=value...][&nestedOption=value...]]

The failover supports among other following options:

• failover.reconnectDelay

• failover.maxReconnectAttempts

• failover.useReconnectBackOff

• failover.reconnectBackOffMultiplier

These options can be used to control how many times and in which time intervals the client

should try to reconnect to the broker. For example:

failover:(amqps://ecag-fixml-simu1.deutsche-

boerse.com:10170?...)?failover.reconnectDelay=30000&failover.maxReconnectAttempts=10&fai

lover.useReconnectBackOff=false&jms.clientID=myClient&failover.nested.amqp.idleTimeout=6

0000

Additional failover options can be found in the documentation on

http://qpid.apache.org/documentation.html

3.3.3 Addresses

Addresses are used to describe the message target or message source.6 The address is a string,

which is passed as a parameter to a receiver or a sender, where it is handled. An address

always resolves to a node – either queue or topic. This chapter will focus on the specific

address strings, which can be used to interact with the Eurex Clearing interfaces.

Every application needs 4 different address string types in order to fully utilize the Eurex

Clearing interfaces:

1. Receiving broadcasts

2. Receiving responses

3. Sending requests

4. “ReplyTo” address in requests

In the JNDI properties, the type queue should be used for receiving messages (broadcast

address and response address) and the type topic for sending messages (reply address and

request address):

6 Client APIs from other providers will use a different approach for defining message targets and sources. Please refer to

the documentation of the used API for more details.

http://qpid.apache.org/documentation.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 30 of 61

queue.[jndiname]=<Address>

topic.[jndiname]=<Address>

for example:

topic.requestAddress=<Address>

queue.responseAddress=<Address>

3.3.3.1 Receiving responses to requests

As described in the Eurex Clearing FIXML/FpML/Margin Calculator Interface Specification,

“Volume E: AMQP Setup & Internals”, receiving responses to requests can be done either using

an auto-delete response queue which has to be created by the client application and bound to

the response exchange or using the predefined response queue. Unlike the AMQP 0-10 client,

which receives the responses using the auto-delete response queues, the 1.0 client is already

using the predefined response queue.

The following address string can be used as a template:

<ResponseQueueName>

The placeholders in this template have to be replaced with the appropriate values:

queue.responseAddress=response.ABCFR_ABCFRALMMACC1

3.3.3.2 Sending requests

The request messages should be sent to the request exchange, which is specific for each

Member. Since the request exchange is already predefined, the address string is simpler than

the address string for receiving responses:

<RequestExchange>

The placeholders in this template have to be replaced with the appropriate values:

topic.requestAddress=request.ABCFR_ABCFRALMMACC1

3.3.3.3 “ReplyTo” address in requests

The “ReplyTo” address is assigned as a property to the request message. It encodes both the

reply to exchange as well as the reply to routing key:

<ResponseExchange>/<ResponseRoutingKey>

The placeholders in this template have to be replaced with the appropriate values:

topic.replyAddress=response/response.ABCFR_ABCFRALMMACC1

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 31 of 61

The response to a request message sent with the reply to address above can be received by a

receiver created using the example address from chapter Error! Reference source not found..

3.3.3.4 Receiving broadcasts

To receive broadcast messages, it is necessary to create a receiver on the broadcast queues

predefined during the technical maintenance. The following address string can be used as a

template:

<PredefinedBroadcastQueue>

The <PredefinedBroadcastQueue> placeholder has to be replaced by the real name of the

Members’ broadcast queue. The address string corresponding to the queue for the trade

confirmation broadcast stream of Member ABCFR, account ABCFR_ABCFRALMMACC1 will be as

follows:
queue.responseAddress=broadcast.ABCFR_ABCFRALMMACC1.TradeConfirmation

3.3.4 Performance

3.3.4.1 Receive pre-fetching

AMQP brokers typically push messages to client consumers without explicit client requests

(asynchronously, in the background) up to a certain number of unsettled messages. The next

time a message would be passed on to the application code, it is usually taken from this buffer

(avoiding synchronous I/O). This buffering capacity of a client is configurable and it is typically

set to hundreds of messages by default. Setting it too low can have a negative impact on

message throughput (less overlap of message processing and background I/O). Setting it too

high can have a negative impact on client memory consumption (pre-fetch buffers need to hold

many messages). Also, all messages pre-fetched by one consumer are “locked” to that

consumer (and will not be delivered to any other consumer reading the same queue) until the

consumer releases/rejects them. This can lead to a less than ideal load balancing in case of

parallel consumption and processing of messages from a single broker queue.

In Apache Qpid JMS client for AMQP 1.0 client, the pre-fetch capacity can be specified in the

connection address string using several options. For receiving from queues, following two

options are relevant:

• jms.prefetchPolicy.queuePrefetch

• jms.prefetchPolicy.all

The default prefetch limit is set to 1000. Additional prefetch options can be found in the

documentation on http://qpid.apache.org/documentation.html

http://qpid.apache.org/documentation.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 32 of 61

3.3.4.2 Message acknowledgement

Message acknowledgement is synchronous by default. In case a client application requires

asynchronous message acknowledgement (e.g. doesn’t require guarantee that the acknowledged

message was removed from a broker queue before proceeding further), it can be enabled using

the “jms.sendAcksAsync” connection option.

When using explicit acknowledgement of received messages (as described in section Error!

Reference source not found.), doing one-by-one synchronous acknowledgement of messages

can severely degrade performance. Message consumption rate is then limited by the network

round-trip latency between the client and the broker. For example, a round-trip time of 100ms

would limit the synchronous throughput to no more than 10 messages per second.

Message receiving performance in the synchronous acknowledge mode can be improved via

block processing of messages. The following Java code example is an extension of the code

example from section 3.2.6.4 and illustrates block processing. It will receive and process up to

100 messages, then finally acknowledge all received messages in a single call (thus mitigating

the impact of network latency):

int maxCount = 100;

Message message, lastMessage = null;

// receive and process up to 100 messages

while ((message = responseConsumer.receiveNoWait()) != null) {

 // process the message

 System.out.println(message.toString());

 // remember the last processed message

 lastMessage = message;

 // check total block size

 if (--maxCount <= 0) {

 break;

 }

}

// acknowledge ALL previously received messages

if (lastMessage != null) {

 lastMessage.acknowledge();

}

3.3.4.3 Sender synchronization

When sending messages (as shown in section 3.2.6.2), the send call is by default synchronous

for messages which are persistent and are not part of a transaction. All other messages are sent

asynchronously. Asynchronous sending means that a message being sent is not guaranteed to

arrive at a broker by the time the send call returns in a client application. When a message is

sent synchronously, the send call will wait for confirmation from the broker. However, sending

messages synchronously can have a significant negative impact on performance in case of

significant network latency between the client and the server.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 33 of 61

Unlike in C++, it is not possible to invoke explicit session synchronization in JMS (to achieve

block or batch sending and mitigate the negative impact of network latency).

Following options in the connection URI can be used to change this behavior:

• jms.forceAsyncSend

• jms.alwaysSyncSend

The option jms.alwaysSyncSend can force the client to send all messages synchronously. The

option jms.forceAsyncSend does the exact opposite – it forces the client to send all messages

asynchronously.

3.3.5 Logging

The Apache Qpid JMS client for AMQP 1.0 uses Simple Logging Facade for Java (SLF4J),

which serves as a simple facade or abstraction for various logging frameworks. SLF4J allows

the end-user to plug in the desired logging framework at deployment time. There is only a single

mandatory dependency, namely slf4j-api library for using the client API.

According to the desired logging framework, one of the following SLF4J bindings can be

included:

• slf4j-log4j12 - Binding for log4j, a widely used logging framework. Needs to place

log4j.jar on the class path.

• slf4j-jdk14 - Binding for java.util.logging, also referred to as JDK 1.4 logging

• slf4j-nop - Binding for NOP, silently discarding all logging.

• slf4j-simple - Binding for Simple implementation, which outputs all events to System.err.

Only messages of level INFO and higher are printed. This binding may be useful in the

context of small applications.

• slf4j-jcl - Binding for Jakarta Commons Logging. This binding will delegate all SLF4J

logging to JCL.

The simplest way to see the Java Qpid API log messages is to include the slf4j-simple binding

library into the project path. All Qpid messages from level INFO and higher will be printed into

the standard error output.

For more advanced configuration and also if the project already uses log4j logging framework,

one can use slf4j-log4j12 binding. It is required to place also the log4j.jar library into the

project’s class path. Configuration for the log4j is extensive and can be found on the project’s

website (http://logging.apache.org/log4j/). By default when no configuration file could be

located the DefaultConfiguration will be used. This will cause logging output to go to the

console.

To enable the logging of AMQP frames sent / received by the client, the Frame logger can be

enabled by using following option in the connection URI:

amqp.traceFrames=true

Another option can be used to display the raw AMQP bytes which the client sends / receives:

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 34 of 61

amqp.traceBytes=true

3.4 SwiftMQ AMQP 1.0 client

Unlike the Apache Qpid client, the SwiftMQ client is not JMS based client. By default, this

client doesn’t support the SSL / TLS client authentication. But the support can be easily added

using a custom SSL socket factory.7

3.4.1 SSL Client Authentication

While the SwiftMQ client doesn’t support SSL / TLS client authentication, it allows the use of

custom SSL socket factories. That can be utilized to add the support for the SSL client

authentication. The new socket factory will be based on the original socket factory shipped with

the SwiftMQ client, which supports only SSL / TLS server authentication.

The new socket factory will use a custom key manager when initializing the SSL context.

Everything else will be left for the original JSSESocketFactory from the package

com.swiftmq.net:

public class MySSLSocketFactory extends JSSESocketFactory {

 private String alias;

 public MySSLSocketFactory(String alias)

 {

 this.alias = alias;

 }

 public Socket createSocket(InetAddress addr, int port) throws UnknownHostException,

IOException

 {

 return initializeSSLContext().getSocketFactory().createSocket(addr, port);

 }

 public Socket createSocket(String host, int port) throws UnknownHostException,

IOException

 {

 return initializeSSLContext().getSocketFactory().createSocket(host, port);

 }

 private SSLContext initializeSSLContext()

 {

 SSLContext sslContext = null;

 KeyManager[] keyManagers = null;

 try {

 sslContext = SSLContext.getInstance("TLS");

 } catch (NoSuchAlgorithmException e) {

 e.printStackTrace();

 }

 try {

 keyManagers = new KeyManager[] { new MyKeyManager(alias) };

 } catch (GeneralSecurityException e1) {

 e1.printStackTrace();

7 http://blog.effectivemessaging.com/2013/10/connecting-with-swiftmq-java-client-to.html

http://blog.effectivemessaging.com/2013/10/connecting-with-swiftmq-java-client-to.html

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 35 of 61

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 try {

 sslContext.init(keyManagers, null, null);

 } catch (KeyManagementException e) {

 e.printStackTrace();

 }

 return sslContext;

 }

}

The key manager will pass the alias of the certificate which should be used for the client

authentication:
public class MyKeyManager extends X509ExtendedKeyManager {

 private String alias;

 private X509ExtendedKeyManager originalKeyManager;

 public MyKeyManager(String alias) throws GeneralSecurityException, IOException

 {

 this.alias = alias;

 KeyStore ks = KeyStore.getInstance("JKS");

 ks.load(new FileInputStream(new

File(System.getProperty("javax.net.ssl.keyStore"))),

System.getProperty("javax.net.ssl.keyStorePassword").toCharArray());

 KeyManagerFactory kmf =

KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());

 kmf.init(ks,

System.getProperty("javax.net.ssl.keyStorePassword").toCharArray());

 originalKeyManager = (X509ExtendedKeyManager)kmf.getKeyManagers()[0];

 }

 @Override

 public String chooseClientAlias(String[] keyType, Principal[] issuers, Socket

socket) {

 return alias;

 }

 @Override

 public String chooseServerAlias(String keyType, Principal[] issuers, Socket socket)

{

 return originalKeyManager.chooseServerAlias(keyType, issuers, socket);

 }

 public X509Certificate[] getCertificateChain(String alias)

 {

 return originalKeyManager.getCertificateChain(alias);

 }

 public String[] getClientAliases(String keyType, Principal[] issuers)

 {

 return new String[]{alias};

 }

 public PrivateKey getPrivateKey(String alias)

 {

 return originalKeyManager.getPrivateKey(alias);

 }

 public String[] getServerAliases(String keyType, Principal[] issuers)

 {

 return originalKeyManager.getServerAliases(keyType, issuers);

 }

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 36 of 61

 public String chooseEngineClientAlias(String[] keyType, Principal[] issuers,

SSLEngine engine)

 {

 return alias;

 }

 public String chooseEngineServerAlias(String keyType, Principal[] issuers, SSLEngine

engine)

 {

 return originalKeyManager.chooseEngineServerAlias(keyType, issuers, engine);

 }

}

The key manager will make sure that the proper certificate is used for the authentication.

3.4.2 Preparing connection and session

The keystore and truststore files which will be used for establishing the connection with the

AMQP broker are specified as system properties:
System.setProperty("javax.net.ssl.trustStore", <PathToTruststore>);

System.setProperty("javax.net.ssl.trustStorePassword", <TruststorePassword>);

System.setProperty("javax.net.ssl.keyStore", <PathToKeystore>);

System.setProperty("javax.net.ssl.keyStorePassword", <KeystorePassword>);

e.g.:

System.setProperty("javax.net.ssl.trustStore", "truststore");

System.setProperty("javax.net.ssl.trustStorePassword", "123456");

System.setProperty("javax.net.ssl.keyStore", "ABCFR_ABCFRALMMACC1.keystore");

System.setProperty("javax.net.ssl.keyStorePassword", "123456");

With the new socket factory ready, the connection can be established. First, the AMQPContext

has to be initialized to specify that the SwiftMQ library should behave as AMQP client. With the

context, the Connection can be created. The username and password should be left as an

empty string. To be able to connect to Eurex Clearing interfaces, the SASL mechanism needs to

be set to EXTERNAL. Additionally, the client has to be instructed to use the the socket factory

prepared in previous chapter. Once everything is ready, the client can connect to the broker:

AMQPContext ctx = new AMQPContext(AMQPContext.CLIENT);

Connection connection = new Connection(ctx, <Hostname>, <Port>, "", "");

connection.setMechanism("EXTERNAL");

connection.setSocketFactory(new MySSLSocketFactory(<CertificateAlias>));

connection.setIdleTimeout(<idleTimeout_in_milliseconds>);

connection.connect();

e.g.:

AMQPContext ctx = new AMQPContext(AMQPContext.CLIENT);

Connection connection = new Connection(ctx, ecag-fixml-simu1.deutsche-boerse.de, 10170,

"", "");

connection.setMechanism("EXTERNAL");

connection.setSocketFactory(new MySSLSocketFactory("abcfr_abcfralmmacc1"));

connection.setIdleTimeout(60000);

connection.connect();

Once the connection is established, the session can be created on top of it:

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 37 of 61

Session session = connection.createSession(1000, 1000);

The createSession(…) method accepts two parameters. These define the size of the

incoming and outgoing windows – how many unsettled (unacknowledged) messages can be

received from the broker or sent to the broker.

3.4.3 Creating consumer and producer

Once the session is ready, it can be used to create message consumer or producer. To create a

consumer, the createConsumer(…) method should be used. It requires several parameters:

• The address of the message source (queue name)

• The quality of service

• Link credit

• No local filter

• Selector filter

The quality of service should be in most case AT_LEAST_ONCE, because AT_MOST_ONCE

reliability can result in a message loss and EXACTLY_ONCE reliability is not supported by the

AMQP broker used on Eurex Clearing interfaces. The no local filter is irrelevant for Eurex

Clearing interfaces, because the client application is not allowed to send messages to the same

queues where it receives the messages from. The selector filter can be used to receive only

selected messages from the queue.

Consumer c = session.createConsumer(<QueueName>, 1000, QoS.AT_LEAST_ONCE, true, null);

For example to receive responses:

Consumer c = session.createConsumer("response.ABCFR_ABCFRALMMACC1 ", 1000,

QoS.AT_LEAST_ONCE, true, null);

Or to receive broadcasts:

Consumer c = session.createConsumer("response. ABCFR_ABCFRALMMACC1.TradeConfirmation",

1000, QoS.AT_LEAST_ONCE, true, null);

You can also use the selector filter to receive only some messages. Filter can be based on

application property:

Consumer c = session.createConsumer("response. ABCFR_ABCFRALMMACC1.TradeConfirmation",

1000, QoS.AT_LEAST_ONCE, true, "BusinessDate='20160813'");

Or based on message property - for example correlation ID:

Consumer c = session.createConsumer("response.ABCFR_ABCFRALMMACC1 ", 1000,

QoS.AT_LEAST_ONCE, true, "amqp.correlation_id='" + correlationID + "'");

Creating a message producer is very similar to the consumer. The createProducer(…) method

requires only two parameters:

• The address of the message target (AMQP exchange / topic name)

• The quality of service

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 38 of 61

Again, the quality of service should be in most case AT_LEAST_ONCE, because

AT_MOST_ONCE reliability can result in a message loss and EXACTLY_ONCE reliability is not

supported by the AMQP broker used on Eurex Clearing interfaces.

Producer p = session.createProducer(<ExchangeName>, QoS.AT_LEAST_ONCE);

For example to send requests:

Producer p = session.createProducer("request.CBKFR_TESTCALMMACC1", QoS.AT_LEAST_ONCE);

3.4.4 Sending messages

Messages sent to Eurex Clearing interfaces should contain the XML based payload as String

type value:
AMQPMessage msg = new AMQPMessage();

msg.setAmqpValue(new AmqpValue(new AMQPString("<FIXML>…</FIXML>")));

Every request message should contain the reply to information, which tells Eurex system where

should the response message be sent.

Properties msgProp = new Properties();

msgProp.setReplyTo(<ReplyToAddress>);

msg.setProperties(msgProp);

The reply to should be set to response exchange / response routing key:

Properties msgProp = new Properties();

msgProp.setReplyTo(new AddressString("response/response.ABCFR_ABCFRALMMACC1"));

msg.setProperties(msgProp);

Once the message is prepared, it can be sent using the producer:

p.send(msg);

In SwiftMQ, the messages are sent asynchronously.

3.4.5 Receiving messages

Messages can be received from the message consumer using several different receive(…)

methods. The SwiftMQ client offers a choice between several blocking and non-blocking

variants. It also supports possibility to setup asynchronous callback when a message is

available. More details about the different methods can be found in the SwiftMQ

documentation.

Following example shows how to receive the message using a blocking receiver with timeout. It

also shows how to extract the XML from the message and accept it after it is processed.

while (true) {

 respMsg = c.receive(60000);

 if(respMsg == null) {

 System.out.println("-I- No message in queue for 60 seconds. Finishing ...");

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 39 of 61

 break;

 }

 System.out.println("-I- Response message received");

 Data data = respMsg.getData().get(0);

 StringBuilder builder = new StringBuilder();

 byte[] bytes = data.getValue();

 for (int i = 0; i < bytes.length; i++) {

 builder.append((char) bytes[i]);

 }

 System.out.println("XML payload: " + builder.toString());

 // Process message

 respMsg.accept();

}

3.4.6 Closing the connection

When the client application is exiting, it should close all consumers, producers, session and the

connection itself. All these objects can be closed using their close() method.

p.close();

c.close();

session.close();

connection.close();

3.4.7 Logging

A debugging mode can be enabled by setting following system properties to true:

• swiftmq.amqp.debug

• swiftmq.amqp.frame.debug

The first one would print additional debug messages, while the second one would print even the

sent / received AMQP frames.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 40 of 61

4 C++

This chapter contains the guide through the development of Eurex Clearing FIXML/FpML/Margin

Calculator Interface client programs in C++ language under the Linux and Windows operating

systems using the Apache Qpid C++ API, version 0.32. The library is available for download at

http://qpid.apache.org. Developing C++ clients using different client libraries is not covered by

this chapter. The C++ based client application can be divided into 6 different parts:

1. Environment setup

2. Specifying the destination (message source or target)

3. Preparing connection and session

4. Creating a receiver / sender

5. Receiving / sending of messages

6. Closing the connection

The code examples are simplified (especially error & exception handling and logging) to provide

better overview of the functionality. This chapter will contain only code snippets - complete

examples are available for download on the Eurex website (see chapter 1.9 for more details).

The Qpid C++ API is also expected to work on other platforms as well – for example on Solaris

or AIX. The Qpid C++ API works also on the ARM hardware platform.

4.1 Environment setup under Linux

In order to successfully connect to the Eurex Clearing FIXML/FpML/Margin Calculator Interface,

the account certificate (public and private key) as well as a certificate for verification of the

AMQP broker has to be passed to the C++ Qpid library. Within Linux operating systems the

locations of certificates are passed via exporting the proper environment variables.

How to generate private and public keys is described in “Volume A: Connectivity”. The public

keys of Eurex Clearing brokers can be obtained from the public part of the Eurex Clearing

website for the Eurex Clearing FIXML Interface and from the Member part of the Eurex Clearing

website for the Eurex Clearing FpML Interface and Eurex Clearing Margin Calculator Interface.

The following text will assume that the following files are either prepared according to “Volume

A: Connectivity” or are downloaded from the Eurex Clearing website:

1. Member’s public key in a printable encoding format according to RFC 1421 standard

<ABCFR_ABCFRALMMACC1>.crt

2. Member’s private key in PKCS12 format

<ABCFR_ABCFRALMMACC1>.p12

3. Broker’s public key in a printable encoding format according to RFC 1421 standard

<Broker certificate>.crt

http://qpid.apache.org/

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 41 of 61

The C++ Qpid API requires all certificates to be stored in a certificate database created by NSS

certutil utility. Creating the database and importing the certificates into it can be achieved

with few steps.8 The database will be stored in the subdirectory <cert_dir> of the current

directory. Following command creates the empty database. It will ask for a password to protect

it.

$ certutil -N -d cert_dir

Next, the public key of the broker needs to be imported. It will be imported under an alias

<BrokerCertAlias> into the database.

$ certutil -A -d cert_dir -n "<BrokerCertAlias>" -t "P,," -i

<Broker certificate>.crt

The next step is importing Member’s public key and creating an alias <CertAlias> for it in

the database.

$ certutil -A -d cert_dir -n "<CertAlias>" -t ",," -i

<ABCFR_ABCFRALMMACC1>.crt

Finally, the last step is to import the Member’s private key. The key will be automatically

matched with the just imported public part of the pair.

$ pk12util -d cert_dir -i <ABCFR_ABCFRALMMACC1>.p12

To ensure that the certificate database is prepared correctly, its content can be listed:

 $ certutil -L -d cert_dir

An output like this should be produced:

Certificate Nickname Trust Attributes

 SSL,S/MIME,JAR/XPI

ABCFR_ABCFRALMMACC1 u,u,u

ecag-fixml-simu1 P,,

In the previous example the alias <CertAlias> for the Member’s certificates is

ABCFR_ABCFRALMMACC1 and the alias <BrokerCertAlias> for the broker public key is

ecag-fixml-simu1.

Once the database with certificates is prepared, several Qpid environment variables need to be

properly exported. C++ Qpid API uses these variables for establishing the SSL / TLS connection

to the broker. Exporting the following three variables in the Bash Shell will do the job:

$ export QPID_SSL_CERT_DB=cert_dir

$ export QPID_SSL_CERT_NAME=<CertAlias>

$ export QPID_SSL_CERT_PASSWORD_FILE=<PWD_FILE>

8 In case the self-signed certificate has been created using the NSS certutil utility as described in “Volume A:

Connectivity”, it is already stored in an existing database. This database can be reused and in such case the only

necessary task is to import the broker public keys.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 42 of 61

QPID_SSL_CERT variable should point to the directory where the database was created.

QPID_SSL_CERT_NAME variable holds the name – an alias for the Member’s certificate which

is contained in the database. Finally, QPID_SSL_CERT_PASSWORD_FILE should point to the

text file containing the database password which was entered during the initial creation of the

database.

4.2 Environment setup under Windows

The SSL / TLS authentication in the C++ client library for Windows is supported since the

Apache Qpid release 0.26.

The Qpid client application under the Windows can either use certificates for authentication

against the broker from the system’s certificate store or the certificates may be provided to the

application from files.

To use certificates from the system’s store, one has to first properly import them. The public key

for verifying the identity of Eurex’s AMQP broker has to be always stored in the system’s

certificate store. A tool called certmgr.msc is a Microsoft Management Console (MMC) snap-in

that ships with Windows and can be used to manage the certificate stores for users, computers,

and services. First the broker’s public key needs to be imported. It is assumed that the pubic

key is on the file-system in a printable encoding format according to RFC 1421 standard:

<Broker certificate>.crt

Inside the certmgr.msc one expands the Trusted Root Certification Authorities store and clicks

with right button on the Certificates folder. Choosing Import then guides us to select the CRT

file from the file-system and finally accept trusting the certificate.

Member’s private certificate can be used either from the system’s certificate store or directly

from a PKCS12 file.

The Member’s certificate can be imported into the system’s certificate store by double clicking

on the file holding the private key in PKCS12 format, e.g.:

<ABCFR_ABCFRALMMACC1>.p12

The popped-up dialog again guides us through the import of the key into the personal registry.

Environment variables have to be used to tell the application which certificate should be used.

The variable QPID_SSL_CERT_STORE can be used to configure the store where the certificate

was imported. If not specified, it defaults to the “MY” or “Personal” store. The environment

variable QPID_SSL_CERT_NAME specifies the certificate which should be used. The certificate

is specified using its “friendly name”.

set QPID_SSL_CERT_STORE=<CertificateStore>

set QPID_SSL_CERT_NAME=<friendlyName>

For example:

set QPID_SSL_CERT_STORE=Personal

set QPID_SSL_CERT_NAME=CN=ABCFR_ABCFRALMMACC1

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 43 of 61

To use the certificate directly from the PKCS12 file, the environment variable

QPID_SSL_CERT_FILENAME has to specify the PKCS12 file, the variable

QPID_SSL_CERT_PASSWORD_FILE the password file and the variable QPID_SSL_CERT_NAME

the friendly name of the certificate. The password file is a plain text file containing the password

to the PKCS12 file.

set QPID_SSL_CERT_FILENAME=<certificateFile>

set QPID_SSL_CERT_PASSWORD_FILE=<passwordFile>

set QPID_SSL_CERT_NAME=<friendlyName>

for example:

set QPID_SSL_CERT_FILENAME=ABCFR_ABCFRALMMACC1.p12

set QPID_SSL_CERT_PASSWORD_FILE=ABCFR_ABCFRALMMACC1.pwd

set QPID_SSL_CERT_NAME=abcfr_abcfralmmacc1

4.3 Specifying the destination (addresses)

To describe the message target or message source, C++ based API from the Apache Qpid

project uses “Addresses” – a strings passed as a parameters to a receiver or a sender, where

they are processed. This chapter will focus on the specific address strings, which can be used

to interact with the Eurex Clearing interfaces.

Every application will need 4 different address string types in order to fully utilize the Eurex

Clearing interfaces:

• Receiving broadcasts

• Receiving responses

• Sending requests

• “ReplyTo” address in requests

NOTE: The formatting of the sample addresses below is for display purposes only. Actual

address strings are formatted as a single line and do not contain line breaks.

4.3.1.1 Receiving responses to requests

Unlike the 0-10 client which is creating the temporary queue and binding it to the response

exchange, the 1.0 client simply connects to the predefined queue. As a result the address is not

as complicated:

<ResponseQueueName>;

{

 create: receiver,

 assert: never,

 node:

 {

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 44 of 61

 type: queue

 }

}

The placeholders in this template have to be replaced with the appropriate values, e.g.:

response.ABCFR_ABCFRALMMACC1;

{

 create: receiver,

 assert: never,

 node:

 {

 type: queue

 }

}

4.4 Preparing connection and session

A connection is created by instantiating an object of type Connection and needs to be

initialized using the connection string of the form"amqp:ssl:<IP/Hostname>:<Port>".

 Connection connection("amqp:ssl:<IP/Hostname>:<Port>");

 connection.setOption("reconnect", true);

 connection.setOption("transport", "ssl");

 connection.setOption("sasl_mechanisms", "EXTERNAL");

In the above code snippet the <IP/Hostname> and <Port> placeholders need to be replaced

by the actual hostname and port of the broker.

The C++ client doesn’t automatically select the newest supported AMQP protocol. It always

connects using AMQP 0-10 by default. In order to connect using AMQP 1.0, the “protocol”

option has to be used when creating the connection object:

 Connection connection("amqp:ssl:<IP/Hostname>:<Port>", "{ protocol: amqp1.0

}");

 connection.setOption("reconnect", true);

 connection.setOption("transport", "ssl");

 connection.setOption("sasl_mechanisms", "EXTERNAL");

The protocol has to be specified in the constructor – I cannot be specified using the

setOption(…) method later.

If a connection is opened using the reconnect option, it will transparently reconnect if the

connection is lost. The failover behavior can be modified using connection options. More details

about the available options can be found in the documentation to the Apache Qpid C++ API.

The most important options are:

• reconnect: true/false (enables/disables reconnect entirely)

• reconnect_urls: list of urls to try when connecting

• reconnect_timeout: seconds (give up and report failure after specified time)

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 45 of 61

• reconnect_limit: n (give up and report failure after specified number of attempts)

The application which is interested in automated failover handling between the list of nodes

should have option reconnect set to true and the list of nodes should be passed to the

reconnect_urls option:

 connection.setOption("reconnect", true);

 connection.setOption("reconnect_urls", "amqp:ssl:ecag-fixml-simu1.deutsche-

boerse.com:10170");

Eventually, using timeout and limit parameters the application can control how much time is it

allowing Qpid library to try another node in the list. The example source code illustrates how to

use failover handling using the list of broker nodes.

The failover based on a node list distributed by the broker (using amq.failover exchange) is

not supported on Eurex Clearing FIXML/FpML/Margin Calculator Interface brokers.

Additionally, the heartbeat option can be used to specify the heartbeat interval. Heartbeats

are disabled by default. You can enable them by specifying a heartbeat interval (in seconds) for

the connection via the heartbeat option, e.g.:

connection.setOption("heartbeat", 120);

With the above option the application requests that heartbeats should be sent every 120

seconds. If two successive heartbeats are missed the connection is considered to be lost. The

use of heartbeat is recommended. The recommended heartbeat interval is between 30 and 120

seconds.

After these steps, the connection needs to be opened and new session created:

connection.open();

Session session = connection.createSession();

4.4.1 Auto reference handling

In the Qpid C++ library, all messaging objects (Connection, Session, Sender, and Receiver)

use internal handlers to keep track of references to underlying data. Therefore, it is safe to e.g.

create a connection inside some method and return it by value. The copy constructor will

automatically increase the internal count. Therefore, the connection will not be closed, if the

destructor is called on the method’s object (after the return call).

4.5 Creating a receiver/sender

After the connection and session have been prepared, a receiver or a producer can be

instantiated. A Receiver object can be instantiated using a createReceiver() method

from the Session. The receiver is always bound to a specific destination (Address) which was

initialized with the proper destination string. In the following code snippets the full destination

strings are omitted and represented by the placeholder <Dest_Address>. Full addresses can

be found in the example source codes.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 46 of 61

 const std::string responseAddress = "<Dest_Address>";

Receiver receiver = session.createReceiver(responseAddress);

Receivers can use filters to receive only selected messages. The filter has to be incorporated

into the address used to create the receiver. It is added into the address

<QueueName>;

{

 create: receiver,

 assert: never,

 node:

 {

 type: queue

 },

 link:

 {

 selector: \"property = value\"

 }

}

For example to filter messages based on business date:

broadcast.ABCFR_ABCFRALMMACC1.TradeConfirmation;

{

 create: receiver,

 assert: never,

 node:

 {

 type: queue

 },

 link:

 {

 selector: \"BusinessDate = 20160813\"

 }

}

Or to filter messages based on correlation ID:

response.ABCFR_ABCFRALMMACC1;

{

 create: receiver,

 assert: never,

 node:

 {

 type: queue

 },

 link:

 {

 selector: \"amqp.correlation_id = '123456'\"

 }

}

The producer (sender) can be created in a very similar way by instantiating the Sender object

and initializing it with the proper destination.

 const std::string requestAddress = "<Dest_Address>";

Sender sender = session.createSender(requestAddress);

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 47 of 61

4.6 Thread safety

The C++ Qpid client objects are thread-safe (Session, Receiver, Consumer) and therefore it is

possible to have two threads sending on the same session. However, it is still recommended to

use separate sessions for separate threads.

4.7 Receiving/sending messages

4.7.1 Preparing a request message

To prepare a new message, the Message class can be used. For request messages, only the

message body and the reply-to key have to be filled. The message body can be entered using

the message’s method setContent() which accepts string representing body as a parameter.

The reply to parameter is created by calling the message’s setReplyTo() method with reply-

to address passed as a parameter:

Message requestMsg;

const std::string replyAddress = "<Dest_Address>";

requestMsg.setReplyTo(replyAddress);

requestMsg.setContent("<FIXML> ... </FIXML>");

4.7.2 Sending a request message

The message prepared in the previous chapter can be sent using the message producer. Since

the producer has been initialized with the destination already at the beginning, it is not

necessary to use the request destination again. The messages are sent asynchronously by

default:

sender.send(requestMsg);

In order to send the message synchronously, the sync parameter of the method send should

be set to true:

sender.send(requestMsg, true);

When sending the messages asynchronously, the session should be synchronized after every

few messages in order to make sure that the requests which were sent asynchronously were

delivered to the broker. The session can be synchronized using the sync method of the session

object:

session.sync();

The sync method will block until the broker confirms that it received and stored all of the

messages.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 48 of 61

The request queues have only limited capacity and when the queue is almost full a flow control

mechanism will be activated by the broker (the exact queue sizes as well as the flow control

thresholds for different interfaces can be found in the Volume E of this documentation, chapter

4.1.1.6). When the flow control is activated for the given request queue, the broker will delay

sending the confirmations of received messages. That will cause the synchronous send calls or

sync calls to block your application until it can send the next request message. When the

messages are sent asynchronously, the client will ignore the flow control measures applied by

the broker and can easily exceed the size of the request queue. Therefore in order to avoid

exceeding the request queue capacity, the requests should be either sent synchronously or the

session should be synchronized often enough to avoid exceeding the queue capacity.

4.7.3 Receiving a message

Messages can be received using the fetch() method of the Receiver instance:

Message msg = receiver.fetch();

// Processing of the message

session.acknowledge(msg);

Using parameters of the fetch() method, the application can either wait until a message is

received for a limited (pass the Duration::<TIME_UNIT>*<TIME> timeout as a parameter to

the method) or unlimited time. The way how to implement an asynchronous message listener

using POSIX threads is shown in the example source codes.

The message should be acknowledged after its processing is finished. The acknowledgement

can be done using the call of the acknowledge() method of the session. Unlike Java Qpid

API, the C++ library doesn’t support automatic acknowledgement, therefore the client

application is always responsible for proper acknowledgement handling.

4.7.4 Message processing

The received message is returned from the fetch() method as an instance of the class

Message. The content of the message can be received in the form of string calling the

getContent() method.

std::cout << msg.getContent() << std::endl;

4.8 Closing the connection

When the application is exiting, it should properly close all AMQP related objects. The receivers,

producers, session and connection all have a method close(), which will properly close them.

Closing a connection automatically destroys all underlying sessions and producers/consumers

connected to it. However, before closing the connection, the session must be synchronized with

the broker:

session.sync();

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 49 of 61

connection.close();

4.9 Compilation and linking on the Linux operating system

The following text assumes the tools used for compilation and linkage of code on the Linux

operating system are from GNU Compiler Collection (gcc, g++).

For compilation of the source codes the compiler has to be informed where the Qpid header

files are. The linker has to be informed which Qpid libraries the executable needs to be linked

with and where to find these libraries. Let us assume the Qpid was installed in the

$QPID_HOME directory.

The Qpid header files should be then located in $QPID_HOME/include while Qpid libraries in

$QPID_HOME/lib. The location of the header files is passed to g++ via –I option, the

location of the libraries using the –L option.

The following command then compiles broadcast_receiver.cpp source code:

g++ -I$(QPID_HOME)/include –c broadcast_receiver.cpp

And linking the final executable broadcast_receiver with proper Qpid libraries is achieved

with:

g++ -o broadcast_receiver broadcast_receiver.o –L$(QPID_HOME)/lib –

lqpidmessaging –lqpidtypes

In the above example the executable was linked with the Qpid libraries called qpidmessaging,

qpidtypes.

The compiler and linker flags and options might be different on different Linux distributions.

For SSL / TLS authentication to work, Qpid has to be compiled with SASL2 library support (the

location of the library has to be recognized during the installation process). On some

platforms/environments it may be also required to explicitly invoke loading of the

sslconnector.so module. To accomplish this, the environment variable

QPID_LOAD_MODULE should point to the

$(QPID_HOME)/lib/qpid/client/sslconnector.so library.

4.10 Compilation and linkage under the Windows operating system

Compiling and linking Qpid C++ client programs under the Windows is performed within the

Visual Studio.

4.11 Logging

The Qpid C++ clients can both use environment variables to enable logging. Linux and

Windows systems use the same named environment variables and values.

Enabling the logging under the Linux and configuring its verbosity can be achieved by setting up

environment variable:

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 50 of 61

$ export QPID_LOG_ENABLE=<Level>[+]

Where <Level> can be one of trace, debug, info, notice, warning, error, or critical. Specifying

the ending ‘+’ mark will capture all events starting from the <Level> and above, while without

using the mark one will receive only the events belonging to the selected level. Higher logging

verbosity may be especially helpful during the connection troubleshooting.

From a Windows command prompt, use the following command format to set the environment

variable:

$ set QPID_LOG_ENABLE=<Level>[+]

Clients also use QPID_LOG_OUTPUT to determine where logging output should be sent. This is

either a file name or the special values stderr, stdout, or syslog:

$ export QPID_LOG_TO_FILE="/tmp/myclient.out"

To control the logging from within the application, the classes Logger and LoggerOutput from

the qpid::messaging namespace can be used. More details can be found in the Apache Qpid

documentation.

4.12 Error handling

A client application should be designed in such a way that it is resilient to the errors, it does not

get stuck when error occurs and at the same time it doesn’t start consuming more and more

resources. All exceptions the Qpid messaging API can throw are derived from the

MessagingException. There are a couple of exceptions related to the common type of errors

having following base exception:

• AddressError - related to processing addresses used to create senders and/or receivers

o MalformedAddress - syntax error in the address

o ResolutionError - error in interpreting address

▪ AssertionFailed - asserted node properties are not correct

▪ NotFound - node is not found

• TransportFailure - loss of the underlying connection

• TargetCapacityExceeded - lack of capacity on queue

• NoMessageAvailable – no message on queue

Certain exceptions may render the session invalid; once these occur, subsequent calls on the

session will throw the same class of exception. One can test whether the session is valid at any

time using the hasError() and/or checkError() methods on Session. Some exceptions

may even destroy the connection; to test whether the connection object is still valid, one can

call isOpen() method.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 51 of 61

Generally, the client application should properly check all Qpid C++ API methods for

exceptions and in case the exception occurred, an application can, at a minimum, log the

problem and clean up its resources. An application can also notify any interest parties that need

to be notified of such a problem. An application should be designed with a clean initialization

setup, so it would be feasible to reinitialize the objects when the exception occurs.

4.13 Performance

4.13.1 Receive pre-fetching

AMQP brokers typically push messages to client consumers without explicit client requests

(asynchronously, in the background), up to a certain number of unacknowledged messages.

The next time a message would be passed on to the client application code, it is usually taken

from this buffer (avoiding synchronous I/O). This buffering capacity of a client is configurable

and it is typically set to hundreds of messages by default. Setting it too low can have a negative

impact on message throughput (less overlap of message processing and background I/O).

Setting it too high can have a negative impact on client memory consumption (pre-fetch buffers

need to hold many messages). Also, all messages pre-fetched by one consumer are “locked” to

that consumer (and will not be delivered to any other consumer reading the same queue) until

the consumer releases/rejects them. This can lead to a less than ideal load balancing in case of

parallel consumption and processing of messages from a single broker queue.

A client normally cannot have more outstanding (unacknowledged) messages than the

configured pre-fetch since a broker will stop pushing messages in that situation.

The pre-fetch capacity can be configured for each receiver e.g. (extension of code from section

4.5):

receiver. setCapacity(100);

4.13.2 Message acknowledgement

Message acknowledgement is asynchronous by default. In case a client application requires

synchronous message acknowledgement (e.g. to be absolutely sure that a message was

removed from a broker queue before proceeding further), it can be achieved by explicitly setting

the second parameter of the call to ‘true’ (‘false’ when omitted):

session.acknowledge(msg, true);

When using explicit acknowledgement of received messages (as described in section 4.7.3),

doing one-by-one synchronous acknowledgement of messages can severely degrade

performance. In that case, message consumption rate cannot exceed the inverse of the network

round-trip latency between the client and the broker. For example, a round-trip time of 100ms

would limit the synchronous throughput to no more than 10 messages per second.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 52 of 61

Message receiver performance in the synchronous acknowledge mode can be improved via

block processing of messages. The following code is an extension of the code from section

4.7.3 and illustrates block processing. It will receive and process up to 100 messages, then

finally acknowledge all received messages in a single call (thus mitigating the impact of network

latency):

int maxCount = 100;

msg::Message msg;

// receive up to 100 messages

while (receiver.fetch(msg, msg::Duration::IMMEDIATE))

{

 // process the message

 std::cout << "Message: " << msg.getContent() << std::endl;

 // check total block size

 if (--maxCount <= 0)

 {

 break;

 }

}

// acknowledge all previously fetched messages

session.acknowledge(true);

4.13.3 Sender synchronization

When sending messages (as shown in section 4.7.2), the send call is asynchronous by default.

This means that a message being sent is not guaranteed to arrive at a broker by the time the

send call returns in a client application. Any send call can be made synchronously (i.e. wait for

message delivery confirmation) via the second parameter of the call:

sender.send(requestMsg, true);

The above will implicitly synchronize any messages previously sent (asynchronously) via the

same session (in addition to the message being sent). However, this can have a significant

negative impact on performance due to network latency between the client and the server. It is

similar to the synchronous acknowledge after every message discussed in section 4.13.2.

 It is also possible to explicitly synchronize the session:

session.sync();

This will synchronously wait until the client receives delivery confirmations for all messages

previously sent via the session. This way, clients can employ (reliable) block/burst message

sending.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 53 of 61

5 .NET

5.1 Apache Qpid Messaging API

The .NET Binding for the C++ Qpid Messaging Client is a library that gives any .NET program

access to Qpid C++ Messaging objects and methods. These bindings provide mappings

between classes in the .NET Binding and the underlying C++ Messaging API. Since the .NET

binding provides only a wrapper around the C++ library, the .NET library supports all features

of the C++ library including the AMQP 1.0 support.

The binding consists of following two components:

• .NET Messaging Binding Library

Provides access to unmanaged, native Qpid Messaging C++ core run time system

• .NET Messaging Managed Callback Library

An extension of the .NET Messaging Binding Library that provides message callbacks in

a managed .NET environment.

The mechanism of creating the Connection, Session, Receiver/Producer objects is the same as

in the underlying C++ API with the respect of .NET naming conventions and garbage

collection. Regarding receiving messages, the .NET callback library provides additional

mechanism for asynchronous message reception by the registered callback object

(implementing the ISessionReceiver interface). The asynchronous receiver is used in the

“BroadcastReceiver” source code example (see chapter 1.9 for more details).

.NET bindings propagate all the underlying Qpid exceptions from the C++ layer in one

common QpidException. Therefore, one cannot distinguish in the common catch block in

which situation was the exception thrown and what exactly was caused by this exception (e.g.

when the thrown exception invalidates the session or even the connection). It is recommended

to check the session (Session.HasError) and connection (Connection.IsOpen) and

eventually to re-initialize them.

5.2 AMQP.NET Lite

AMQP.NET Lite is an AMQP 1.0 client library written in pure .NET. It can be downloaded from

https://github.com/Azure/amqpnetlite - version 1.1.2 or newer is required to connect to Eurex

Clearing interfaces.

5.2.1 Environment setup

AMQP.NET Lite client is using Windows certificate store as the main source of certificates. The

Eurex Clearing public key has to be present in the "Trusted Root Certification Authorities" store

and the member’s private key has to be stored in the “Personal” store. To import the public /

private keys, the Windows Certificate Manager utility can be used (certmgr.msc).

https://github.com/Azure/amqpnetlite

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 54 of 61

Additionally to the certificates stored in the Windows Certificate Store, the public key belonging

to the member certificate has to be stored in a file. This file will be loaded by the client

application and used to tell the client library which private key should be used.

5.2.2 Preparing Connection and Session

The connection is created using the ConnectionFactory. Before opening the connection, the

factory has to be configured to support SSL.

ConnectionFactory factory = new ConnectionFactory();

The public key of the member certificate has to be added to the ClientCertificates. It will

use the file which was prepared in previous chapter:

factory.SSL.ClientCertificates.Add(X509Certificate.CreateFromCertFile("c:\\pat

h\\to\\certificate\\ABCFR_ABCFRALMMACC1.crt"));

By default, the library would select the SSL certificate for the client authentication based on the

list of supported certification authorities as published by the AMQP broker. This would not work

on the Eurex Clearing interfaces because only self-signed certificates are used. The

LocalCertificateSelectionCallback has to be used to select the proper certificate.

factory.SSL.LocalCertificateSelectionCallback = (a, b, c, d, e) =>

X509Certificate.CreateFromCertFile("c:\\path\\to\\certificate\\ABCFR_ABCFRALMM

ACC1.crt");

To validate the broker certificate, the RemoteCertificateValidationCallback should be

configured. A new method for the server certificate validation has to be created:

public static bool ValidateServerCertificate(object sender, X509Certificate

certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors)

{

 if (sslPolicyErrors == SslPolicyErrors.None

 {

 return true;

 }

 Console.WriteLine("Certificate error: {0}", sslPolicyErrors);

 return false;

}

This method would let the server certificate validation pass only in case there were no errors.

The method has to be used in the callback:

factory.SSL.RemoteCertificateValidationCallback = ValidateServerCertificate;

Additionally to the SSL settings, the maximal frame size should be set to 64kB and the SASL

mechanism has to be set to EXTERNAL.

factory.AMQP.MaxFrameSize = 64 * 1024;

factory.SASL.Profile = SaslProfile.External;

The factory can be also used to configure idleTimeout. Idle timeout needs to be specified in

number of milliseconds. The recommended idleTimeout interval is between 30000 and

120000 miliseconds.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 55 of 61

factory.AMQP.IdleTimeout = 60000;

When the factory is properly configured, it can be used to create the connection. The broker

address is in the format “amqps://<hostname>:<port>”, for example “amqps://ecag-

fixml-simu1.deutsche-boerse.com:10170”.

Address brokerAddress = new Address("amqps://ecag-fixml-simu1.deutsche-

boerse.com:10170");

Connection connection = await factory.CreateAsync(brokerAddress);

With the connection ready, the session can be opened:

Session session = new Session(connection);

5.2.3 Receiving / Sending messages

5.2.3.1 Creating receiver / sender

ReceiverLink and SenderLink classes represent the message receiver and sender. They

both accept three different parameters:

1. The AMQP session

2. The name of the receiver / sender link

3. The address where the messages should be received from / sent to

The address is always the queue name, for example:

SenderLink sender = new SenderLink(session, "request-sender",

"request.ABCFR_ABCFRALMMACC1");

ReceiverLink receiver = new ReceiverLink(session, "response-receiver",

"response.ABCFR_ABCFRALMMACC1");

5.2.3.2 Using filters

The ReceiverLink can be configured to use AMQP filters. The FilterSet has to prepared

containing all filters which should be used when creating the receiving link. To use filters,

different ReceiverLink constructor has to be used, which allows passing the whole message

source and not only the address:

Map filters = new Map();

filters.Add(new Symbol("apache.org:selector-filter:string"), new

DescribedValue(new Symbol("apache.org:selector-filter:string"),

"amqp.correlation_id='123456'"));

ReceiverLink receiver = new ReceiverLink(session, "response-receiver", new

Source() { Address = "response.ABCFR_ABCFRALMMACC1", FilterSet = filters},

null);

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 56 of 61

5.2.3.3 Preparing a request message

The Message class is used to create a new message. Additionally to the message payload, the

ReplyTo property has to be set to “response/response.ABCFR_ABCFRALMMACC1” so that the

response message can be routed back to the client.

Message request = new Message("Hello world!");

request.Properties = new Properties();

request.Properties.ReplyTo = "response/response.ABCFR_ABCFRALMMACC1";

5.2.3.4 Sending a request message

The message can be sent using the Send method:

sender.Send(request);

The Send method will send the message synchronously. There is additional method

SendAsync to send messages asynchronously.

5.2.3.5 Receiving a message

Messages can be received using the Receive method of the ReceiverLink object. The

parameter defines the timeout for which the receiver will wait for new message to arrive.

Message response = receiver.Receive(60000);

In case no message is received during the timeout interval, null value will be returned.

5.2.3.6 Message Processing

The messages received from Eurex have the payload encoded as single binary data section. To

decode it, the BodySection has to be first converted to the Amqp.Framing.Data and

afterwards to UTF string:

Amqp.Framing.Data payload = (Amqp.Framing.Data)response.BodySection;

String payloadText = Encoding.UTF8.GetString(payload.Binary);

5.2.4 Closing the connection

To close the connection, call the Close method:

connection.Close();

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 57 of 61

5.2.5 Logging

The client can trace the AMQP protocol frames. To switch it on, the trace level and the listener

have to be configured:

Trace.TraceLevel = TraceLevel.Frame;

Trace.TraceListener = (f, a) => Console.WriteLine(String.Format(f, a));

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 58 of 61

6 Python

The API that supports AMQP 1.0 is a Python wrapper around the Apache Qpid C++ library.

Just like the C++ library it supports 1.0 protocol. This library is available in the

qpid_messaging package (or cqpid package in older Qpid versions). While the library

interface is slightly different from the C++ library, it is using the same SSL implementation as

the C++ API. Therefore, the certificate formats as well as the environment setup are identical.

APIs is using the same addresses to identify the message sources and targets as the C++

clients.

The detailed description of the Python libraries and their interfaces is not part of this

documentation. However, simple programs for receiving broadcasts, sending requests and

receiving responses using both these libraries are part of the code examples – see chapter 1.9

for more details.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 59 of 61

7 Troubleshooting

7.1 Errors

During a message exchange between a client and the broker several error situations may occur

due to a misconfiguration or malfunctioning software.

7.1.1 Connection failure

The following reasons can lead to failure to establish a connection with the broker.

• Host unreachable

• Invalid host certificate

• Invalid client key

7.1.2 Too many connections

When the limit of maximum number of connections is reached.

Permission PERFORM_ACTION(connect) is denied for : VirtualHost 'default' on

VirtualHostNode 'default' [condition = amqp:not-allowed]

7.1.3 Unknown destination

When a request is sent to an invalid address.

Unknown destination 'request.ABCFR_TESTCALMMACC1X' [condition = amqp:not-

found]

7.1.4 Invalid destination

When a request is sent to an address to which the client does not have the right to publish.

Permission PERFORM_ACTION(publish) is denied for : Exchange

'request.ABCFR_TESTCALMMACC2' on VirtualHost 'default' [condition = amqp:not-

allowed]

7.1.5 Non-existent queue

Attempt to consume a message from a non-existent queue

Could not find destination for source

'Source{address=broadcast.ABCFR_TESTCALMMACC1.PublicX,durable=none,expiryPolic

y=link-

detach,dynamic=false,defaultOutcome=Modified{deliveryFailed=true},outcomes=[am

qp:accepted:list, amqp:released:list,

amqp:rejected:list],capabilities=[queue]}' [condition = amqp:not-found]

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 60 of 61

7.1.6 Invalid queue

Attempt to consume a message from a queue which the client does not have the right to

consume.

Permission CREATE is denied for : Consumer '17|1|qpid-

jms:receiver:ID:bc025dfc-ac00-42aa-95d1-

62f07dafa0ac:1:1:1:broadcast.ABCFR_TESTCALMMACC2.Public' on Queue

'broadcast.ABCFR_TESTCALMMACC2.Public' [condition = amqp:unauthorized-access]

7.1.7 Full queue

7.1.7.1 Message count limit

When a request queue message count limit is reached.

Maximum depth exceeded on 'request_be.ABCFR_TESTCALMMACC1.C7' :

current=[count: 6001, size: 4212630], max=[count: 6000, size: 6144000]

[condition = amqp:resource-limit-exceeded]

7.1.7.2 Byte size limit

When a request queue byte size limit is reached.

Maximum depth exceeded on 'request_be.ABCFR_TESTCALMMACC1.C7' :

current=[count: 4536, size: 6144580], max=[count: 6000, size: 6144000]

[condition = amqp:resource-limit-exceeded]

7.2 Lost connection

It can happen that a connection between the broker and the client can be lost. To detect such

failure client applications are advised to specify idle-timeout which will enable a heart-beat

mechanism on the established connection. This way if a connection is lost both client and the

broker can detect it and act accordingly.

In case of connection loss client can choose to reconnect automatically. If a connection loss is a

result of a broker technical maintenance, it can be expected that the broker may not be

available for several minutes. To cover such situation, it is suggested to automatically retry to

connect every minute for at least 30 minutes.

Eurex Clearing Messaging Interfaces Connectivity Eurex Clearing

B: AMQP Programming Guide

 As of 21.10.20

 Page 61 of 61

8 Glossary of terms and abbreviations

Term / Abbr. Definition

AMQP Advanced Message Queuing Protocol - standard for Messaging Middleware.

Apache Qpid Open source implementation of AMQP protocol

Binding A binding is a relationship between a message queue and an exchange. The

binding specifies routing arguments that tell the exchange which messages

the queue should get.

Broker AMQP middleware messaging server

Eurex System Eurex hosts

Exchange An exchange accepts messages from a producer application and routes

them to message queues according to prearranged criteria.

EXTERNAL

authentication

AMQP authentication mechanism based on SSL / TLS certificates

FIX The Financial Information Exchange Protocol

FIXML FIX business messages in XML syntax

FpML Financial products Markup Language is the industry-standard protocol for

complex financial products. It is based on XML.

Message A message is the atomic unit of routing and queuing. Messages have a

header consisting of a defined set of properties, and a body that is an

opaque block of binary data.

Queue A message queue stores messages in memory or on disk, and delivers these

in sequence to one or more consumer applications. Message queues are

message storage and distribution entities. Each message queue is entirely

independent.

Routing key A message property used in bindings to specify the exchange – queue

relationship.

SASL Simple Authentication and Security Layer

SSL Secure Sockets Layer – cryptographic protocol designed to provide

communication security over the Internet

TLS Transport Layer Security – cryptographic protocol designed to provide

communication security over the Internet and successor to SSL protocol.

XML Extensible Markup Language

